NUMERICAL METHOD FOR SOLVING THE DIRICHLET BOUNDARY VALUE PROBLEM FOR NONLINEAR TRIHARMONIC EQUATION
نویسندگان
چکیده
In this work, we consider the Dirichlet boundary value problem for nonlinear triharmonic equation. Due to reduction of operator equation pair right hand side function and unknown second normal derivative be sought, design an iterative method at both continuous discrete levels numerical solution problem. Some examples demonstrate that is fourth order convergence. When does not depend on its derivatives, gives more accurate results in comparison with obtained by interior Gudi Neilan.
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولNumerical Solution of a Boundary Value Problem for Triharmonic Equation
In this note we present some numerical experiments for illustrating the convergence of an iterative method for solving a boundary value problem for triharmonic equation, where a sequence of boundary value problems for the Poisson equation is solved at iterations. These results of computation confirm the theoretical conclusion in [2]. Mathematics Subject Classification: 35J40, 65N99
متن کاملRiemann Boundary Value Problem for Triharmonic Equation in Higher Space
We mainly deal with the boundary value problem for triharmonic function with value in a universal Clifford algebra: Δ(3)[u](x) = 0, x ∈ R (n)\∂Ω, u (+)(x) = u (-)(x)G(x) + g(x), x ∈ ∂Ω, (D (j) u)(+)(x) = (D (j) u)(-)(x)A j + f j (x), x ∈ ∂Ω, u(∞) = 0, where (j = 1,…, 5) ∂Ω is a Lyapunov surface in R (n) , D = ∑ k=1 (n) e k (∂/∂x k) is the Dirac operator, and u(x) = ∑ A e A u A (x) are unknown ...
متن کاملDirichlet boundary value problem for Duffing’s equation
We use a direct variational method in order to investigate the dependence on parameter for the solution for a Duffing type equation with Dirichlet boundary value conditions. Mathematics Subject Classification. 49J02
متن کاملIterative method for solving a nonlinear boundary value problem
In this paper, a boundary value problem for a nonlinear second-order ordinary differential equation is studied. By means of the maximum principle we established the existence and the uniqueness of a solution of the problem. Then for finding the solution an iterative method is proposed. It is proved that this method converges much faster than the Picar successive approximations and in a particul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer Science and Cybernetics
سال: 2022
ISSN: ['1813-9663']
DOI: https://doi.org/10.15625/1813-9663/38/2/16912